Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Food Chem Toxicol ; 178: 113875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286028

RESUMO

Environmental cadmium (Cd) exposure is a serious public health concern, as the kidney is the primary target for Cd exposure. The present study aimed to investigate the role and underlying mechanisms of nuclear factor erythroid-derived 2-like 2 (Nrf2) in renal fibrosis induced by chronic Cd exposure. Nrf2 knockout (Nrf2-KO) mice and their wild-type littermates (Nrf2-WT) were exposed to 100 or 200 ppm Cd in drinking water for up to 16 or 24 weeks. Following the Cd exposures, Nrf2-KO mice showed elevated urinary neutrophil gelatinase-associated lipocalin (NGAL) and BUN levels compared to Nrf2-WT mice. Masson's trichrome staining and expression of fibrosis-associated proteins revealed that more severe renal fibrosis occurred in Nrf2-KO than that in Nrf2-WT mice. Renal Cd content in the Nrf2-KO mice exposed to 200 ppm Cd was lower than that in Nrf2-WT mice, which might be a consequence of the severe renal fibrosis in the Nrf2-KO mice. Mechanistic studies showed that Nrf2-KO mice exhibited higher levels of oxidative damage, lower antioxidant levels, and more regulated cell death, apoptosis in particular, than those in Nrf2-WT mice caused by Cd exposure. In conclusion, Nrf2-KO mice were more prone to develop renal fibrosis induced by chronic Cd exposure, partially due to a weakened antioxidant, detoxification capacity and increased oxidative damage.


Assuntos
Cádmio , Nefropatias , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Antioxidantes/metabolismo , Cádmio/toxicidade , Fibrose/induzido quimicamente , Nefropatias/induzido quimicamente , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
2.
Environ Toxicol ; 38(5): 1143-1152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773304

RESUMO

Exposure to atrazine (ATR), a widely-used herbicide, is a potential harmful to human health due to its long-term environmental persistence and bioaccumulation. The effects of chronic exposure to ATR on renal function in rats were evaluated in this research. Female Sprague-Dawley rats at 4 weeks of age were treated with different concentrations of ATR for 6 months. No significant differences  in terms of renal functions were observed after ATR treatment. In histopathological examination of the kidney, Hematoxylin-Eosin staining indicated the development of degenerative changes in a dose-dependent manner. The results revealed that ATR exposure leads to renal fibrosis and that activation of the Wnt/ß-catenin pathway plays a potential role in ATR-related renal fibrosis. Levels of transforming growth factor (TGF)-ß and TGF-ß1 levels and the reactive oxygen species were significantly upregulated after ATR treatment. In conclusion, long-term exposure to ATR could cause kidney fibrosis, which is the result of epithelial-mesenchymal transition caused by inflammation and oxidative stress.


Assuntos
Atrazina , Herbicidas , Nefropatias , Via de Sinalização Wnt , Animais , Feminino , Ratos , Atrazina/toxicidade , beta Catenina/metabolismo , Fibrose/induzido quimicamente , Herbicidas/toxicidade , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
3.
Toxicol Lett ; 359: 10-21, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114312

RESUMO

Organic anion transporters 1 (OAT1) and OAT3 are responsible for transporting adefovir (ADV) into renal tubular epithelial cells. Our previous research found that ADV accumulated in the renal interstitium and caused renal interstitial fibrosis when Oat1/3 were inhibited by OATs inhibitor probenecid for long-term. Mast cells (MCs) in the interstitial space are considered to be key drivers of renal fibrosis. The current work investigated the effect of ADV on MCs in vitro and during the development of interstitial fibrosis in rats. Results indicate that ADV triggers chymase release from cultured RBL-2H3 mast cells in a time-and concentration-dependent manner. Angiotensin II (Ang II) in renal interstitium is generated mainly by chymase, renin and other products released from MCs, and has a direct effect on fibrosis through the angiotensin receptor. The concentrations of Ang II and fibrosis was significantly increased after administration of ADV alone or with probenecid for 4 weeks. The MCs membrane stabilizer sodium cromoglycate (SCG) and the angiotensin receptor antagonist Valsartan (VAL) could ameliorate ADV-induced nephrotoxicity. Additionally, SCG or VAL could reduce the accumulation of ADV in the renal interstitium by upregulating the expression of Oat1/3 and multidrug resistance-associated protein 4. Therefore, ADV accumulation in the renal interstitium could promote the degranulation of interstitial MCs and drive the development of renal fibrosis. SCG or VAL could ameliorate ADV-associated fibrosis by decreasing degranulation of MCs and accelerating renal clearance of ADV.


Assuntos
Adenina/análogos & derivados , Adenina/toxicidade , Degranulação Celular/efeitos dos fármacos , Fibrose/induzido quimicamente , Nefropatias/induzido quimicamente , Mastócitos/efeitos dos fármacos , Organofosfonatos/toxicidade , Adenina/sangue , Animais , Modelos Animais de Doenças , Fibrose/fisiopatologia , Humanos , Nefropatias/fisiopatologia , Túbulos Renais/efeitos dos fármacos , Masculino , Organofosfonatos/sangue , Ratos
4.
Life Sci ; 295: 120410, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182557

RESUMO

AIM: Liver cirrhosis is the result of a vicious cycle of both chronic oxidative stress and inflammation. NADPH oxidase-4 (NOX4) and its companion, NOD-like receptor protein 3 (NLRP3) inflammasome, are emerging as therapeutic targets of liver fibrosis. MAIN METHODS: Baicalin (BA), a natural flavone, has been investigated for its therapeutic potential against cirrhosis induced by thioacetamide (TAA) (200 mg/kg, twice/week) for 12 weeks in Sprague-Dawley rats. Two doses of BA were administered (25 and 75 mg/kg/day, orally, a week after TAA was stopped and continued for 4 weeks). KEY FINDINGS: BA was able to reduce fibrosis visualized by Masson trichrome and immunohistochemical staining of the hepatic α-smooth muscle actin (α-SMA) and transforming growth factor-ß1. Moreover, BA was able to ameliorate inflammation by reducing hepatic NLRP3 inflammasome subunits, NLRP3 and caspase-1, both parts of the complex responsible for the activation of different interleukins (IL), measured as IL-1ß. In addition, BA was able to reduce hepatic nuclear factor kappa B (NF-κB)-driven inflammation through IL-6. BA targeted inflammation through its anti-oxidant ability evidenced by the enhancement of the hepatic superoxide dismutase (SOD) and reduced glutathione (GSH) activity and level, respectively, and the reduction of both hepatic malondialdehyde (MDA) and nitric oxide (NOx) contents. Treatment with BA significantly decreased TAA-induced elevation in hepatic NOX4, a key enzyme for reactive oxygen species (ROS) generation, as well as, inducible nitric oxide synthase (iNOS). SIGNIFICANCE: therefore, the study could conclude, the anti-fibrotic effect of BA through TGF- ß1/NOX4/NF-κB/NLRP3 pathway, exerting both anti-inflammatory and anti-oxidant effects.


Assuntos
Flavonoides/farmacologia , Inflamassomos/metabolismo , Cirrose Hepática/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Flavonoides/metabolismo , Inflamação/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , NADPH Oxidase 4/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioacetamida/efeitos adversos , Tioacetamida/farmacologia
5.
Hum Exp Toxicol ; 41: 9603271211065975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187969

RESUMO

The aim of this study was to determine the protective effects of alpha-lipoic acid (ALA), which is known as a powerful antioxidant, and the possible related molecular mechanisms that mediate its favorable action on skin fibrosis in the bleomycin (BLM)-induced scleroderma (SSc) model in mice. The experimental design was established with four groups of eight mice: Control, ALA (100 mg/kg), BLM (5 µg/kg), and BLM + ALA group. BLM was administered via subcutaneous (sc) once a day while ALA was injected intraperitoneally (ip) twice a week for 21 days. Histopathological and biochemical analyses showed that ALA significantly reduced BLM-induced dermal thickness, inflammation score, and mRNA expression of tumor necrosis factor-alpha (TNF-α) in the skin. Besides, the mRNA expressions of the subunits of NADPH oxidase, which are Nox4 and p22phox, were found to be significantly induced in the BLM group. However, ALA significantly reduced their mRNA expression, which were in parallel to its decreasing effect on serum total oxidant status (TOS) level. Moreover, it was found that ALA downregulated the mRNA expressions of alpha-smooth muscle actin (α-SMA), collagen type I and fibronectin in the skin tissue of the BLM group. Additionally, it was shown that ALA reduced significantly the TGF-ß1 and p-Smad3 protein expressions in the BLM + ALA group. On the other hand, ALA did not exhibit any significant effect on the p38 mitogen-activated kinase (MAPK) activation induced by BLM. All these findings point out that ALA may be a promising treatment for the attenuation of skin fibrosis in SSc patients.


Assuntos
Bleomicina/toxicidade , Fibrose/induzido quimicamente , Fibrose/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Proteína Smad3/metabolismo , Ácido Tióctico/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidase 4/metabolismo , Substâncias Protetoras/farmacologia
6.
FASEB J ; 36(2): e22101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032343

RESUMO

Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3  µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.


Assuntos
Fibrose/induzido quimicamente , Fibrose/metabolismo , Leiomioma/induzido quimicamente , Bifenil Polibromatos/administração & dosagem , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Uterinas/induzido quimicamente , Neoplasias Uterinas/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Proliferação de Células/efeitos dos fármacos , Estrogênios/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Leiomioma/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Toxicol Lett ; 356: 100-109, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902520

RESUMO

Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Fibrose/induzido quimicamente , Sistema Respiratório/citologia , Antineoplásicos/toxicidade , Biomarcadores , Bleomicina/toxicidade , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Humanos , Fator de Crescimento Transformador beta
8.
Am J Respir Cell Mol Biol ; 66(2): 171-182, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710342

RESUMO

Mesothelial to mesenchymal transition (MesoMT) is one of the crucial mechanisms underlying pleural fibrosis, which results in restrictive lung disease. DOCK2 (dedicator of cytokinesis 2) plays important roles in immune functions; however, its role in pleural fibrosis, particularly MesoMT, remains unknown. We found that amounts of DOCK2 and the MesoMT marker α-SMA (α-smooth muscle actin) were significantly elevated and colocalized in the thickened pleura of patients with nonspecific pleuritis, suggesting the involvement of DOCK2 in the pathogenesis of MesoMT and pleural fibrosis. Likewise, data from three different pleural fibrosis models (TGF-ß [transforming growth factor-ß], carbon black/bleomycin, and streptococcal empyema) consistently demonstrated DOCK2 upregulation and its colocalization with α-SMA in the pleura. In addition, induced DOCK2 colocalized with the mesothelial marker calretinin, implicating DOCK2 in the regulation of MesoMT. Our in vivo data also showed that DOCK2-knockout mice were protected from Streptococcus pneumoniae-induced pleural fibrosis, impaired lung compliance, and collagen deposition. To determine the involvement of DOCK2 in MesoMT, we treated primary human pleural mesothelial cells with the potent MesoMT inducer TGF-ß. TGF-ß significantly induced DOCK2 expression in a time-dependent manner, together with α-SMA, collagen 1, and fibronectin. Furthermore, DOCK2 knockdown significantly attenuated TGF-ß-induced α-SMA, collagen 1, and fibronectin expression, suggesting the importance of DOCK2 in TGF-ß-induced MesoMT. DOCK2 knockdown also inhibited TGF-ß-induced Snail upregulation, which may account for its role in regulating MesoMT. Taken together, the current study provides evidence that DOCK2 contributes to the pathogenesis of pleural fibrosis by mediating MesoMT and deposition of neomatrix and may represent a novel target for its prevention or treatment.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/patologia , Fibrose/patologia , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Pleura/patologia , Pleurisia/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Modelos Animais de Doenças , Epitélio/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pleura/metabolismo , Pleurisia/induzido quimicamente , Pleurisia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
9.
Life Sci ; 288: 120159, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801516

RESUMO

AIMS: Pathological cardiac hypertrophy is a characteristic feature in many cardiovascular diseases (CVDs). Aloin is an anthraquinone glycoside from Aloe species, and the effect of aloin on cardiac hypertrophy and associated fibrotic changes have not been elucidated. This study investigated the effect of aloin against the isoproterenol (ISO)-induced cardiac hypertrophy in rats. MAIN METHODS: Cardiac hypertrophy experimental model was induced in rats by subcutaneous injection of ISO for 14 days. Meanwhile, the animals were administered orally with aloin at doses of 25 and 50 mg/kg/day. On the 15th day, cardiac echocardiography was performed, the heart was collected and subjected for histopathological, gene expression, and immunoblot studies. Additionally, the effect of aloin on ISO-induced hypertrophic changes in H9c2 cells was investigated. KEY FINDINGS: Aloin markedly alleviated ISO-induced heart injury, reduced cardiac hypertrophy, improved cardiac function, and histological alterations in the heart. Mechanistically, aloin attenuated ISO-induced fibrosis via inhibition of the levels of collagen I, α-smooth muscle actin (α-SMA), fibronectin, transforming growth factor-ß (TGF-ß) and pSmad2/3 proteins in the heart. Aloin alleviated ISO-induced myocardial oxidative damage and up-regulated the levels of antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Moreover, aloin treatment attenuated ISO-induced hypertrophic changes and the generation of reactive oxygen species (ROS) in H9c2 cells in vitro. SIGNIFICANCE: Our findings demonstrated that aloin alleviated ISO-induced cardiac hypertrophy and fibrosis via inhibiting TGF-ß/pSmad2/3 signaling and restoring myocardial antioxidants, and therefore has promising therapeutic potential against cardiac hypertrophy and fibrosis.


Assuntos
Antioxidantes/farmacologia , Cardiomegalia/prevenção & controle , Emodina/análogos & derivados , Fibrose/prevenção & controle , Estresse Oxidativo , Agonistas Adrenérgicos beta/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Catárticos/farmacologia , Emodina/farmacologia , Fibrose/induzido quimicamente , Fibrose/metabolismo , Fibrose/patologia , Isoproterenol/toxicidade , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
10.
Life Sci ; 288: 120150, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793770

RESUMO

AIMS: Tacrolimus-a widely used immunosuppressant to prevent allograft rejection after organ transplantation-is nephrotoxic, increasing the risk of kidney injury accompanied by kidney fibrosis. The mammalian target of rapamycin (mTOR) inhibitor, everolimus, is an immunosuppressant used together with tacrolimus. Although mTOR signaling inhibition has been demonstrated to exhibit antifibrotic effects, the efficacy of everolimus against tacrolimus-induced kidney fibrosis has not been explored. Therefore, we evaluated the protective effects of everolimus against tacrolimus-induced kidney fibrosis. MAIN METHODS: To assess antifibrotic effect of everolimus against tacrolimus-induced kidney fibrosis, male Wistar rats were subcutaneously administered vehicle or tacrolimus (5 mg/kg per day) and/or everolimus (0.2 mg/kg per day) for 2 weeks after bilateral renal ischemia for 45 min. The antifibrotic effect of everolimus was also assessed using rat kidney fibroblast cell line (NRK-49F). KEY FINDINGS: Tacrolimus administration increased predominant profibrotic cytokine transforming growth factor-ß (TGF-ß) and fibroblast activation marker α-smooth muscle actin (α-SMA) expression and promoted the infiltration of macrophages in the kidney cortex, resulting in renal interstitial fibrosis in rats. Tacrolimus increased serum creatinine, blood urea nitrogen, kidney injury molecule-1 (KIM-1), and kidney injuries, such as tubular dilation, vacuolization, and glomerular atrophy. Everolimus administration attenuated tacrolimus-induced kidney fibrosis and the associated abnormalities. Everolimus strongly suppressed TGF-ß-induced kidney fibroblast activation and extracellular matrix protein expression by the mTOR signaling inhibition. SIGNIFICANCE: We demonstrated that everolimus attenuates tacrolimus-induced renal interstitial fibrosis in rats. Owing to its protective effect against tacrolimus-induced kidney fibrosis, everolimus may be useful when used concomitantly with tacrolimus.


Assuntos
Everolimo/farmacologia , Fibrose/tratamento farmacológico , Nefropatias/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tacrolimo/toxicidade , Fator de Crescimento Transformador beta/metabolismo , Animais , Fibrose/induzido quimicamente , Fibrose/metabolismo , Fibrose/patologia , Imunossupressores/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/genética
11.
Bioorg Med Chem Lett ; 56: 128464, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808388

RESUMO

Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD) characterized by liver steatosis with lobular inflammation, hepatocyte injury and pericellular fibrosis. JBP485 is a hydrophilic dipeptide with protective effects on liver through alleviation of oxidative stress and inhibition of hepatocyte apoptosis and ICAM-1 expression. Vitamin E (VE), as a powerful biological antioxidant, exerts a certain protective effect on cell membranes and lipoproteins from lipid peroxidation. In this study, on the basis of the structural characteristics of two agents, the prodrug form target of JBP485 and VE (JBP485-VE) was designed and synthesized via succinic acid linker. The synthesized compound significantly reduced the degree of inflammation and fibrosis according to hematoxylin-eosin (H&E) and sirius red staining assay for the liver tissue in CCl4-induced NASH mouse model. The clear reduction of TG, T-CHO and ALT, AST content also demonstrated its efficacy in the treatment of NASH. In addition, JBP485-VE also reduced the expression of the inflammatory markers IL-2, IL-17A and malondialdehyde (MDA) in liver tissue, which indicated its higher anti-inflammatory and anti-oxidative stress activity. All these evaluated biological properties suggest that the strategy of prodrug design provided an effective method for the treatment of NASH.


Assuntos
Desenho de Fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Pró-Fármacos/farmacologia , Vitamina E/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Tetracloreto de Carbono , Relação Dose-Resposta a Droga , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Camundongos , Estrutura Molecular , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Tamanho do Órgão/efeitos dos fármacos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Vitamina E/síntese química , Vitamina E/química
12.
Toxins (Basel) ; 13(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941746

RESUMO

Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial-mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.


Assuntos
Fibrose/induzido quimicamente , Indicã/farmacologia , Nefropatias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , NADPH Oxidases/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais/citologia , Macrófagos/efeitos dos fármacos , NADPH Oxidases/genética , Ornitina-Oxo-Ácido Transaminase/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638597

RESUMO

Cyclosporine A (CsA) is a nephrotoxicant that causes fibrosis via induction of epithelial-mesenchymal transition (EMT). The flavonoid chrysin has been reported to have anti-fibrotic activity and inhibit signaling pathways that are activated during EMT. This study investigated the nephroprotective role of chrysin in the prevention of CsA-induced renal fibrosis and elucidated a mechanism of inhibition against CsA-induced EMT in proximal tubule cells. Treatment with chrysin prevented CsA-induced renal dysfunction in Sprague Dawley rats measured by blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Chrysin inhibited CsA-induced tubulointerstitial fibrosis, characterized by reduced tubular damage and collagen deposition. In vitro, chrysin significantly inhibited EMT in LLC-PK1 cells, evidenced by inhibition of cell migration, decreased collagen expression, reduced presence of mesenchymal markers and elevated epithelial junction proteins. Furthermore, chrysin co-treatment diminished CsA-induced TGF-ß1 signaling pathways, decreasing Smad 3 phosphorylation which lead to a subsequent reduction in Snail expression. Chrysin also inhibited activation of the Akt/ GSK-3ß pathway. Inhibition of both pathways diminished the cytosolic accumulation of ß-catenin, a known trigger for EMT. In conclusion, flavonoids such as chrysin offer protection against CsA-induced renal dysfunction and interstitial fibrosis. Chrysin was shown to inhibit CsA-induced TGF-ß1-dependent EMT in proximal tubule cells by modulation of Smad-dependent and independent signaling pathways.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Flavonoides/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Ciclosporina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo
14.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639099

RESUMO

Renal fibrosis is a progressive chronic kidney disease that ultimately leads to end-stage renal failure. Despite several approaches to combat renal fibrosis, an experimental model to evaluate currently available drugs is not ideal. We developed fibrosis-mimicking models using three-dimensional (3D) co-culture devices designed with three separate layers of tubule interstitium, namely, epithelial, fibroblastic, and endothelial layers. We introduced human renal proximal tubular epithelial cells (HK-2), human umbilical-vein endothelial cells, and patient-derived renal fibroblasts, and evaluated the effects of transforming growth factor-ß (TGF-ß) and TGF-ß inhibitor treatment on this renal fibrosis model. The expression of the fibrosis marker alpha smooth muscle actin upon TGF-ß1 treatment was augmented in monolayer-cultured HK-2 cells in a 3D disease model. In the vascular compartment of renal fibrosis models, the density of vessels was increased and decreased in the TGF-ß-treated group and TGF-ß-inhibitor treatment group, respectively. Multiplex ELISA using supernatants in the TGF-ß-stimulating 3D models showed that pro-inflammatory cytokine and growth factor levels including interleukin-1 beta, tumor necrosis factor alpha, basic fibroblast growth factor, and TGF-ß1, TGF-ß2, and TGF-ß3 were increased, which mimicked the fibrotic microenvironments of human kidneys. This study may enable the construction of a human renal fibrosis-mimicking device model beyond traditional culture experiments.


Assuntos
Endotélio Vascular/patologia , Fibroblastos/patologia , Fibrose/patologia , Túbulos Renais Proximais/patologia , Impressão Tridimensional/instrumentação , Fator de Crescimento Transformador beta1/farmacologia , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo
15.
Eur J Pharmacol ; 912: 174587, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678242

RESUMO

The present study was designed to explore whether high sodium chloride (NaCl)-based diet (HSD) caused cardiac fibrosis regardless of blood pressure in Sprague-Dawley (SD) rats, and to further determine the effects and the underlying mechanisms of microRNA (miR)-210-5p on HSD-induced cardiac fibrosis in rats or NaCl-induced cardiac fibroblast activation in neonatal rat cardiac fibroblasts (NRCFs). The SD rats received 8% HSD, and NRCFs were treated with NaCl. The levels of collagen I, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-ß1) were increased in the heart of hypertension (HTN), hypertension-prone (HP) and hypertension-resistant (HR) rats on HSD in vivo. NaCl increased the levels of collagen I, α-SMA and TGF-ß1 in NRCFs in vitro. The level of miR-210-5p was reduced in both NBD-induced rats' hearts and NaCl-treated NRCFs, which was consistent with the results of miR high-throughput sequencing in NRCFs. The HSD or NaCl-induced increases of collagen I, α-SMA and TGF-ß1 were inhibited by miR-210-5p agomiR in vitro and in vivo, respectively. miR-210-5p antagomiR could mimic the pathological effects of NaCl in NRCFS. Bioinformatics analysis and luciferase reporter assays demonstrated that TGF-ß type I receptor (TGFBR1) was a direct target gene of miR-210-5p. These results indicated that HSD resulted in cardiac fibrosis regardless of blood pressure. The upregulation of miR-210-5p could attenuate cardiac fibroblast activation in NRCFS via targeting TGFBR1. Thus, upregulating miR-210-5p might be a strategy for the treatment of cardiac fibrosis.


Assuntos
Fibrose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Dieta/efeitos adversos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/induzido quimicamente , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/fisiologia , Miocárdio/patologia , Ratos Sprague-Dawley , Cloreto de Sódio/efeitos adversos
16.
Front Endocrinol (Lausanne) ; 12: 744857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650521

RESUMO

Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.


Assuntos
Antifibróticos , Fibrose , Óxido Nítrico Sintase Tipo II , Receptor CB1 de Canabinoide , Dermatopatias , Animais , Humanos , Masculino , Camundongos , Antibióticos Antineoplásicos , Antifibróticos/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bleomicina , Endocanabinoides/metabolismo , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Fibrose/patologia , Hidroxiprolina/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptor CB1 de Canabinoide/antagonistas & inibidores , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia
17.
Exp Mol Pathol ; 123: 104715, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699901

RESUMO

This study was intended (1) to develop a robust animal model for hepatocellular carcinoma (HCC) research, in which HCC tumors develop in a background of fibrosis or cirrhosis; and (2) to explore time-dependent regulatory changes in key molecular markers during disease advancement and HCC development. With the aim of establishing such HCC model, male Sprague-Dawley rats were injected with diethylnitrosamine (DEN) at a dose of 30 mg/kg twice a week for 10 weeks then once a week from 12th to 16th weeks. The rats were kept under observation until 18th week. At defined time intervals (2nd, 4th, 12th, and 18th week), serum biomarkers and microscopic components of tissue samples were used to investigate the chronic progression of liver disease, while gene and protein analysis was used to monitor expression patterns during HCC development. DEN-intoxicated rats manifested inflammation at week 4, fibrosis at week 12 and cirrhosis with early HCC tumors at week 18. Molecular analysis revealed that key markers of inflammation (Il-1ß, Il-6, and Tnf-α), fibrosis (Tgf-ß1, Col1α1, Col3α1, and Timp-1), and angiogenesis (Hif1-α and Vegf) were promptly (P ≤ 0.001) up-regulated at week 4, week 12 and week 18, respectively. Oxidative stress (iNos, Cyp2e1, and Sod1) and pro-apoptotic (Bax) markers showed significant upregulation from week 4 to week 12. However, Sod1 and Bax expressions dropped after week 12 and reached a minimum at 18th week. Strikingly, expressions of anti-apoptotic (Bcl-2) and cell proliferation (Pcna, Hgf, and Afp) markers were abruptly increased at week 18. Collectively, we describe an 18-week HCC model in DEN-intoxicated rats that exhibit chronic inflammation, oxidative imbalance, advance fibrosis/cirrhosis, halted apoptosis, and angiogenic sprouting, progressively.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Inflamação/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Fibrose/induzido quimicamente , Fibrose/genética , Fibrose/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ratos
18.
Int Heart J ; 62(5): 1135-1144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588407

RESUMO

Myocardial fibrosis is an important pathological phenomenon of cardiac remodeling that is induced by hypertension, myocardial ischemia, valvular heart disease, hypertrophic cardiomyopathy, and other heart diseases and can progress to heart failure. Urotensin II (UII) is regarded as a cardiovascular autacoid/hormone that is not only the most potent vasoconstrictor in mammals but also involved in cardiac remodeling. However, the molecular mechanisms responsible for UII-induced cardiac fibrosis have not yet been fully elucidated. Therefore, we aimed to investigate the effect of UII on myocardial fibrosis in cardiac hypertrophy and the mechanism of UII-induced cardiac fibrosis. Cardiac tissue from mice subjected to Transverse aortic constriction (TAC) was collected. Cardiac hypertrophy, myocardial fibrosis, and the expression of UII protein were assessed using echocardiography and pathological and molecular biological analyses. The effect of UII on fibrosis was evaluated in UII-treated mice and isolated rat primary cardiac fibroblasts, and the results indicated that UII induced significant myocardial fibrosis and increases in the proliferation and fibrotic responses both in mice and cultured fibroblasts. Mechanistically, UII treatment induced activation of the TGF-ß/Smad signaling pathway, which was suppressed by the UII receptor antagonist. In conclusion, UII plays critical roles in cardiac fibrosis by modulating the TGF-ß/Smads signaling pathway, which may be a promising therapeutic target in hypertrophic cardiomyopathy and related problems, such as cardiac remodeling and heart failure.


Assuntos
Cardiomegalia/etiologia , Miocárdio/patologia , Transdução de Sinais , Proteína Smad1/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Urotensinas/efeitos adversos , Animais , Fibrose/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Future Med Chem ; 13(23): 2069-2081, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551612

RESUMO

Hyperglycemia-associated advanced glycation end products (AGEs) and the receptor for AGE (RAGE) contribute to nonalcoholic fatty liver disease (NAFLD). Xanthohumol (XH) exhibits protective activities against liver diseases. Aim: To investigate the effects of XH on Type II diabetes mellitus (T2DM)-induced liver steatosis and fibrosis. Methods: NAFLD rat models were duplicated. Biomolecular markers were detected. Quantitative real-time PCR (RT-PCR) and western blot were used to detect mRNA and protein expression. Immunofluorescence assays were employed to identify the subcellular locations. Results: XH significantly ameliorated hyperglycemia and hyperlipidemia in rats. XH attenuated the expression of RAGE and NF-κB signaling. XH significantly alleviated inflammation and oxidation by upregulating NRF2 expression. Knockdown of NRF2 blocked XH protection in hepatocytes. Conclusion: XH protected against T2DM-induced liver steatosis and fibrosis by mediating NRF2/AGE/RAGE/NF-κB signaling.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Fibrose/tratamento farmacológico , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Propiofenonas/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fibrose/induzido quimicamente , Fibrose/metabolismo , Flavonoides/administração & dosagem , Hipoglicemiantes/administração & dosagem , Injeções Intraperitoneais , Masculino , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Propiofenonas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
20.
Pharm Biol ; 59(1): 1045-1057, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34362291

RESUMO

CONTEXT: HuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive. OBJECTIVE: To determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis. MATERIALS AND METHODS: OBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee's index were measured. Heart tissues were examined by histology. HQQR's effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3. RESULTS: HQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee's index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1ß (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1ß pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling. CONCLUSION: HQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1ß pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Coração/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Angiotensina II/farmacologia , Animais , Caspase 1/metabolismo , Inibidores de Caspase , Proliferação de Células/efeitos dos fármacos , Fibrose/induzido quimicamente , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Masculino , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Cultura Primária de Células , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...